Small Business Innovation Research/Small Business Tech Transfer

Electric Pump Fed Propulsion for a Liquid Bipropellant Mars Ascent Vehicle, Phase I

Completed Technology Project (2016 - 2016)

Project Introduction

To-date, the realization of high-performance liquid bipropellant rocket engines for ascent vehicle and sample return applications has largely been hindered by the inability to obtain "on-board" pressurization through a light-weight and low-complexity pump. Ventions seeks to fulfill this critical need by offering low-risk, electric-motor driven pumps for a MON-30 / MMH liquid bipropellant engine in the Mars Ascent Vehicle for significant performance, mass and packaging advantages over pressure-fed or solid / hybrid propulsion systems.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Ventions, LLC	Lead Organization	Industry	San Francisco, California
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations

California

Electric Pump Fed Propulsion for a Liquid Bipropellant Mars Ascent Vehicle, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Electric Pump Fed Propulsion for a Liquid Bipropellant Mars Ascent Vehicle, Phase I

Completed Technology Project (2016 - 2016)

Project Transitions

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139702)

Images

Briefing Chart Image

Electric Pump Fed Propulsion for a Liquid Bipropellant Mars Ascent Vehicle, Phase I (https://techport.nasa.gov/imag e/135193)

Final Summary Chart Image
Electric Pump Fed Propulsion for a
Liquid Bipropellant Mars Ascent
Vehicle, Phase I Project Image
(https://techport.nasa.gov/imag
e/128200)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Ventions, LLC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Adam London

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Electric Pump Fed Propulsion for a Liquid Bipropellant Mars Ascent Vehicle, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

